Banana Pseudostem Visual Detection Method Based on Improved YOLOV7 Detection Algorithm

Author:

Cai Liyuan1ORCID,Liang Jingming1,Xu Xing1ORCID,Duan Jieli23ORCID,Yang Zhou234

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China

2. College of Engineering, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

4. School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Detecting banana pseudostems is an indispensable part of the intelligent management of banana cultivation, which can be used in settings such as counting banana pseudostems and smart fertilization. In complex environments, dense and occlusion banana pseudostems pose a significant challenge for detection. This paper proposes an improved YOLOV7 deep learning object detection algorithm, YOLOV7-FM, for detecting banana pseudostems with different growth conditions. In the loss optimization part of the YOLOV7 model, Focal loss is introduced, to optimize the problematic training for banana pseudostems that are dense and sheltered, so as to improve the recognition rate of challenging samples. In the data augmentation part of the YOLOV7 model, the Mixup data augmentation is used, to improve the model’s generalization ability for banana pseudostems with similar features to complex environments. This paper compares the AP (average precision) and inference speed of the YOLOV7-FM algorithm with YOLOX, YOLOV5, YOLOV3, and Faster R-CNN algorithms. The results show that the AP and inference speed of the YOLOV7-FM algorithm is higher than those models that are compared, with an average inference time of 8.0 ms per image containing banana pseudostems and AP of 81.45%. This improved YOLOV7-FM model can achieve fast and accurate detection of banana pseudostems.

Funder

The Laboratory of Lingnan Modern Agriculture Project

The China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3