Protective and Curative Effects of Trichoderma asperelloides Ta41 on Tomato Root Rot Caused by Rhizoctonia solani Rs33

Author:

Heflish Ahmed A.,Abdelkhalek AhmedORCID,Al-Askar Abdulaziz A.,Behiry Said I.ORCID

Abstract

Two molecularly identified tomato isolates, Trichoderma asperelloides Ta41 and Rhizoctonia solani Rs33, were characterized and antagonistically evaluated. The dual culture technique showed that Ta41 had a high antagonistic activity of 83.33%, while a light microscope bioassay demonstrated that the Ta41 isolate over-parasitized the pathogen completely. Under greenhouse conditions, the application of Ta41 was able to promote tomato plant growth and had a significant increase in plant height, root length, and shoot fresh, shoot dry, root fresh, and root dry weight. It also improved chlorophyll content and total phenol content significantly, both in protective and in curative treatments. The protective treatment assay exhibited the lowest disease index (16.00%), while the curative treatment showed a disease index of 33.33%. At 20 days post-inoculation, significant increases in the relative expression levels of four defense-related genes (PR-1, PR-2, PR-3, and CHS) were observed in all Ta41-treated plants when compared with the non-treated plants. Interestingly, the plants treated with Ta41 alone showed the highest expression, with relative transcriptional levels of CHS, PR-3, PR-1, and PR-2 that were, compared with the control, 3.91-, 3.13-, 2.94-, and 2.69-fold higher, respectively, and the protective treatment showed relative transcriptional levels that were 3.50-, 3.63-, 2.39-, and 2.27-fold higher, respectively. Consequently, the ability of Ta41 to promote tomato growth, suppress Rs33 growth, and induce systemic resistance supports the incorporation of Ta41 as a potential bioagent for controlling root rot disease and increasing the productivity of crops, including tomatoes.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3