Modeling of Cotton Yield Estimation Based on Canopy Sun-Induced Chlorophyll Fluorescence

Author:

Wang Hongyu1,Ding Yiren1,Yao Qiushuang1,Ma Lulu1,Ma Yiru1,Yang Mi1,Qin Shizhe1,Xu Feng1,Zhang Ze1ORCID,Gao Zhe2

Affiliation:

1. Xinjiang Production and Construction Group, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University College of Agriculture, Shihezi 832003, China

2. Shihezi Science and Technology Information Research Institute, Shihezi 832003, China

Abstract

Cotton yield estimation is of great practical significance to producers, allowing them to make rational management decisions. At present, crop yield estimation methods mainly comprise traditional agricultural yield estimation methods, which have many shortcomings. As an ideal “probe” for detecting crop photosynthesis, sun-induced chlorophyll fluorescence (SIF) can directly reflect the dynamics of actual crop photosynthesis and has the potential to predict crop yield, in order to realize cotton yield estimation based on canopy SIF. In this study, we set up field trials with different nitrogen fertilizer gradients. The changes of canopy SIF and the physiological parameters of cotton in different growth periods were analyzed. To investigate the effects of LAI and AGB on canopy SIF estimation of cotton yield, four algorithms, Ada Boost (Adaptive Boosting), Bagging (Bootstrap Aggregating), RF (Random Forest), and BPNN (Backpropagation Neural Network), were used to construct cotton yield estimation models based on the SIF and SIFy (the normalization of SIF by incident photosynthetically active radiation) for different time and growth periods. The results include the following: (1) The effects of the leaf area index (LAI) and aboveground biomass (AGB) on cotton canopy SIF and cotton yield were similar. The correlation coefficients of LAI and AGB with cotton yield and SIF were significantly positively correlated with each other starting from the budding period, reaching the maximum at the flowering and boll period, and decreasing at the boll period; (2) In different monitoring time periods, the R2 of the cotton yield estimation model established based on SIF and SIFy showed a gradual increase from 10:00 to 14:00 and a gradual decrease from 15:00 to 19:00, while the optimal observation time was from 14:00 to 15:00. The R2 increased with the progression of growth from the budding period to the flowering and boll period and decreased at the boll period, while the optimum growth period was the flowering and boll period; (3) Compared to SIF, SIFy has a superior estimation of yield. The best yield estimation model based on the RF algorithm (R2 = 0.9612, RMSE = 66.27 kg·ha−1, RPD = 4.264) was found in the canopy SIFy of the flowering and boll period at 14:00–15:00, followed by the model utilizing the Bagging algorithm (R2 = 0.8898) and Ada Boost algorithm (R2 = 0.8796). In summary, SIFy eliminates the effect of PAR (photosynthetically active radiation) on SIF and can further improve the estimation of SIF production. This study provides empirical support for SIF estimation of cotton yield and methodological and modeling support for the accurate estimation of cotton yield.

Funder

National Natural Science Foundation of China

“Tianshan Talents” Training Program, China, Key Scientific and Technological Research Program of XPCC, China

The Corps “Strong Green” Scientific and Technological Innovation Backbone Personnel Project, China

Eight Division Shihezi City Key Areas of Innovation Team Plan, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3