Estimation of Potato Canopy Nitrogen Content Based on Hyperspectral Index Optimization

Author:

Guo Faxu1,Feng Quan1,Yang Sen1,Yang Wanxia1

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agriculture University, Lanzhou 730070, China

Abstract

Potato canopy nitrogen content (CNC) is an imperative metric for assessing potato growth status and guiding field management. While the spectral index can be utilized to estimate CNC, its efficacy is influenced by the environment and crop type. To address this issue, we utilized hyperspectral indices (HIs) optimization for CNC estimation. Using the inverse and first-order differential (FD) transformations of the original data (OD), HIs comprising two-band combinations in 400–1000 nm, such as RSI, DSI, NDSI, SASI, and PSI, were constructed to analyze the correlation between CNC and HIs. Based on this analysis, prediction models for potato CNC were created using the most optimal HIs. The results showed that FD transformation significantly improved the correlations between CNC and HIs, among which FD−PSI(R654, R565) had the highest correlation with CNC. We further employed the optimal HIs as variables to establish univariate and multivariate regression models to estimate the potato CNC. Among the univariate models, the accuracy of the OD−DSI model was the highest, with an R2 of 0.79 and RMSE of 0.22. Meanwhile, the FD−MLR model demonstrated the highest accuracy compared to the other multivariate models, with an R2 of 0.84, an RMSE of 0.20 during validation, and a greater prediction accuracy than the OD−DSI model. FD−MLR can be used to map the CNC distribution map of monitored potato planting plots to guide precision fertilization.

Funder

National Natural Science Foundation of China

Higher Education Industry Support Program of Gansu Province

Outstanding Graduate Student “Innovation Star” of Gansu Province

Youth Doctoral Fund of Gansu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3