Cover Crops Enhance Soil Properties in Arid Agroecosystem despite Limited Irrigation

Author:

Agarwal Prashasti,Lehnhoff Erik A.,Steiner Robert L.,Idowu Omololu JohnORCID

Abstract

Cover crops (CCs) can enhance the sustainability and resiliency of agroecosystems by providing multiple ecosystem benefits, including soil quality improvement. However, in areas with limited precipitation such as the southwestern USA, cover cropping is challenging. With limited water, it may be difficult to raise cover crops for realizing ecosystem benefits. Research was conducted at two sites in New Mexico over two years to determine if CC under limited irrigation could produce enough biomass to improve soil quality. Treatments included a fallow (control) and monocultures of barley (Hordeum vulgare), Austrian winter peas (Pisum sativum subsp. arvense), mustard (Brassica rapa, var. Caliente 199), and a three-way mixture of these species, grown under three different irrigation regimes. The results indicate that the improvement in soil quality measurements by CCs grown under one supplemental irrigation were comparable to those grown under multiple irrigations. All CC treatments improved the soil dry aggregate size distribution from 2018 to 2020. At the end of the study, the MWD of dry aggregates was higher (3.26 mm) in all CC treatments than in the fallows (2.43 mm) at one site, but at the second site, mustard and mix were comparable to the fallows. Wet aggregate stability increased by 19% in the mix between 2018 and 2020 at one site. Pea plots needed about 23 kg ha−1 less N fertilizer for sweet corn production compared to the fallow treatment at one site. This suggests that CCs can be successfully grown under limited water availability in irrigated arid systems of New Mexico while still improving the soil quality.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3