Control of Gas Emissions (N2O and CO2) Associated with Applied Different Rates of Nitrogen and Their Influences on Growth, Productivity, and Physio-Biochemical Attributes of Green Bean Plants Grown under Different Irrigation Methods

Author:

El-Beltagi Hossam S.ORCID,Hashem Fadl A.ORCID,Maze MonaORCID,Shalaby Tarek A.,Shehata Wael F.,Taha Noura M.ORCID

Abstract

The use of nitrogenous fertilizers in agriculture can cause uncontrolled gas emissions, such as N2O and CO2, leading to global warming and serious climate change. In this study, we evaluated the greenhouse gases emissions (GHGs) that are concomitant with applied different rates of N fertilization, such as 60%, 70%, 80%, 90%, 100%, 110%, and 120% of the recommended dose in green beans grown under three irrigation systems (surface, subsurface, and drip irrigation). The obtained results showed that GHGs were positively correlated with increasing the rate of N fertilization. Meanwhile, the subsurface irrigation system followed by drip irrigation achieved the highest significant (p ≤ 0.05) values regarding the growth and pod yield attributes. Furthermore, N supplements at 90% and/or 100% of the recommended dose under the subsurface irrigation system led to the highest concentration of chlorophyll, vitamin C, total protein, and activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). Proline and pod fibers were decreased in parallel with increasing the N rate, while water use efficiency (WUE) was improved with increasing the rate of N supplements up to 100% or 110% of the recommended dose.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference64 articles.

1. Climate Change: Impacts and Responses for Sustainable Agriculture in Egypt. Watch Letter 37—September; CIHEAM 2016 https://www.ciheam.org/uploads/attachments/259/016_Medany_WL_37.pdf

2. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan

3. Intergovernmental Panel on Climate Change WGI, Fourth Assessment Report. Climate Change 2007: The Physical Science Basis. Summary for Policymakers. IPCC Secretariat, c/o WMO, 7bis, Avenue de la Paix, C.P.N. 2300, 1211 Geneva 2, Switzerland; 2007 https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-spm-1.pdf

4. Phenotyping common beans for adaptation to drought

5. Beans (Phaseolus spp.) – model food legumes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3