Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop

Author:

Liu Jizhan,Abbas Irfan,Noor Rana ShahzadORCID

Abstract

Agrochemical application is an important tool in the agricultural industry for the protection of crops. Agrochemical application with conventional sprayers results in the waste of applied agrochemicals, which not only increases financial losses but also contaminates the environment. Targeted agrochemical sprayers using smart control systems can substantially decrease the chemical input, weed control cost, and destructive environmental contamination. A variable rate spraying system was developed using deep learning methods for the development of new models to classify weeds and to accurately spray on desired weeds target. Laboratory and field experiments were conducted to assess the sprayer performance for weed classification and precise spraying of the target weeds using three classification CNNs (Convolutional Neural Networks) models. The DCNNs models (AlexNet, VGG-16, and GoogleNet) were trained using a dataset containing a total of 12,443 images captured from the strawberry field (4200 images with spotted spurge, 4265 images with Shepherd’s purse, and 4178 strawberry plants). The VGG-16 model attained higher values of precision, recall and F1-score as compared to AlexNet and GoogleNet. Additionally VGG-16 model recorded higher percentage of completely sprayed weeds target (CS = 93%) values. Overall in all experiments, VGG-16 performed better than AlexNet and GoogleNet for real-time weeds target classification and precision spraying. The experiments results revealed that the Sprayer performance decreased with the increase of sprayer traveling speed above 3 km/h. Experimental results recommended that the sprayer with the VGG-16 model can achieve high performance that makes it more ideal for a real-time spraying application. It is concluded that the advanced variable rate spraying system has the potential for spot application of agrochemicals to control weeds in a strawberry field. It can reduce the crop input costs and the environmental pollution risks.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3