Abstract
(1) Background: Spain is the sixth strawberry producer in the world, with about 6500 ha producing more than 350,000 tons, and an annual commercial value about 390 million €. Stunted and dead strawberry plants are frequently associated with plant-parasitic nematodes, but nematode diseases have not been characterized to date in the country. (2) Methods: A poll on the perception of the impact of nematodes on strawberry production was carried out by face-to-face interviews with farm advisors. In addition, nematological field surveys were carried out at the end of the growing season in 2017 and 2018 to determine prevalence and abundance of plant-parasitic nematodes in strawberry crops. The host suitability to Meloidogyne hapla of seventeen strawberry cultivars and the tolerance limit to M. hapla at progressively higher initial population densities (Pi) were assessed in pot experiments in a growth chamber. Comparison of the relative efficacies of several soil disinfestation methods in controlling nematode populations (M. hapla and Pratylenchus penetrans) was carried out in experimental field trials for twelve consecutive years. (3) Results: Meloidogyne spp., Pratylenchus penetrans, and Hemicycliophora spp. were the main plant-parasitic nematodes in the strawberry fields in South Spain. Root-knot nematodes were found in 90% of the fields, being M. hapla the most prevalent species (71% of the fields). A tolerance limit of 0.2 M. hapla juveniles per g of soil was estimated for strawberry, and currently cropped strawberry cultivars did not show resistance to M. hapla. Nematode population densities were reduced by more than 70% by soil fumigation with 1,3-dichloropropene, dazomet, dimethyl-disulfide, and methyl iodide. The efficacy of metam-sodium in reducing nematode populations was about 50% and that of chloropicrin, furfural, and sodium-azide, less than 40%. Combination of solarization with organic manures (biosolarization) reduced soil nematode populations by 68–73%. (4) Conclusions: Plant-parasitic nematodes (Meloidogyne, Pratylenchus, and Hemicycliophora) are widely distributed in the strawberry fields of Southern Spain. Strawberry is a poor host for M. hapla with a tolerance limit of 0.2 J2 per g of soil, and low population increases in cropping cycles of 7–8 months. Strawberry cultivars show a range of susceptibility and tolerance to M. hapla, but no resistance is found. Nematodes are effectively controlled by chemical fumigation of soils, but soil biosolarization is equally effective, and therefore, can be proposed as a sustainable alternative for pathogen control in strawberry cultivation.
Subject
Agronomy and Crop Science
Reference60 articles.
1. FAOSTAThttp://www.fao.org/faostat
2. https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2017/
3. Nematode pests of soft fruits and vines;Brown,1993
4. Distribution of plant-parasitic nematodes in strawberry and raspberry fields in Quebec
5. Plant-parasitic nematodes associated with strawberry (Fragaria ananassa Duch.) in Bulgaria;Samaliev;Bulg. J. Agric. Sci.,2011
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献