Visible Near-Infrared Hyperspectral Soil Organic Matter Prediction Based on Combinatorial Modeling

Author:

Zhang Xiuquan1,Liu Dequan1,Ma Junwei1,Wang Xiaolei1,Li Zhiwei2,Zheng Decong1

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China

2. College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Non-destructive, fast, and accurate prediction of soil organic matter content in farmland is of great significance for soil fertility assessment and rational fertilization. In the process of soil organic matter prediction, it is important to give full play to the advantages of different prediction models and to integrate different prediction models to innovatively construct a combined prediction model of soil organic matter content so as to improve the prediction accuracy and generalization ability of the model. In this study, the soil organic matter content of agricultural soils was taken as the research object, and the visible near-infrared hyperspectral curves of soils were measured by the Starter Kit indoor mobile scanning platform (Headwall Photonics, Bolton, MA, USA), and the original spectral curves were firstly de-noised by Savitzky–Golay (S-G) smoothing. Secondly, the smoothed and denoised spectral data were subjected to a first-order differential transform, and the features were selected based on the first-order differential transformed spectral data using the L1-paradigm algorithm features. Then, secondly, eight algorithms based on the selected feature bands, such as LASSO Regression (LASSO) (Model 1), Multilayer Perceptron (MLP) (Model 2), Random Forest (RF) (Model 3), Gaussian Kernel Regression (GKR) (Model 4), Ridge Regression (Model 5), Long Short-Term Memory (LSTM) (Model 6), Convolutional Neural Networks (CNN) (Model 7), and Support Vector Regression (SVR) (Model 8), were applied to construct a single-prediction model of soil organic matter content. Finally, a superior linear combination-prediction model was proposed by the eight single-prediction models constructed, and the standard deviation-based prediction validity was added to test the model. The results showed the following: (1) the weights of the eight single-prediction models in the combined prediction model were ω1*=0.099, ω2*=0.202, ω3*=0.000, ω4*=0.357, ω5*=0.088, ω6*=0.089, ω7*=0.000, ω8*=0.165, respectively; (2) The average precision E of the predicted values of soil organic matter content constructed based on the eight single-prediction models was 0.856; the average standard deviation σ was 0.181, and the average prediction validity M was 0.702; (3) The accuracy E of the predicted value of soil organic matter content of the combined model was 0.893, which was 4.322% higher than the average accuracy of the single model; the standard deviation of the combined model was 0.129, which was 28.333% lower than the average standard deviation of the single model, and the prediction validity M of the combined model was 0.778, which was 10.826% higher than the average prediction validity of the single model. The combined model can be used for the effective estimation of soil organic matter content in farmland with visible near-infrared spectral data, which can provide a basis and reference for the rapid detection of soil organic matter content in farmland.

Funder

National Key R&D Program Subproject

Research Cooperation Project of Datong Huanghua Industrial Development Research Institute

Publisher

MDPI AG

Reference41 articles.

1. Spatio-temporal Variability and Influencing Factors of Soil Organic Matter in Cultivated Land of Daxing District in Recent 40 Years;Liao;Chin. J. Soil Sci.,2020

2. Determination of soil organic matter content under forest based on different methods;Tao;Sci. Technol. Eng.,2022

3. Prathibha, S.R., Hongal, A., and Jyothi, M.P. (2017, January 16–17). IOT Based Monitoring System in Smart Agriculture. Proceedings of the 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India.

4. Modeling for Soil Organic Matter Content Based on Hyperspectral Feature Indices;Zhao;Acta Pedol. Sin.,2021

5. Predicting soil organic matter contents in cultivated land using Google Earth Engine and machine learning;Guo;Trans. Chin. Soc. Agric. Eng. (Trans. CSAE),2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3