Nonadditive Effects on Decomposition of a Mixture of Rice Straw and Groundnut Stover Applied to a Sandy Soil

Author:

Pingthaisong Wimonsiri,Vityakon PatmaORCID

Abstract

Rice straw is an abundant resource, but its use as a sandy soil amendment does not increase soil organic matter (SOM) accumulation. Our study aimed to determine the altered decomposition processes that result from mixing rice straw (RS) (low N, high cellulose) with groundnut stover (GN) (high N) relative to applying these residues singly to a sandy soil to identify the mechanisms underlying decomposition of the mixed residues. A microcosm experiment using the litter bag technique showed synergistic, nonadditive effects (observed < predicted values) of residue mass remaining (31.1% < 40.3% initial) that were concomitant with chemical constituent loss, including C (cellulose, lignin) and N. The nonadditive effects of soil microbiological parameters in response to the applied residues were synergistic (observed > predicted values) for microbial biomass C (MBC) (92.1 > 58.4 mg C kg−1 soil) and antagonistic (observed < predicted values) for microbial metabolic quotient (i.e., the inverse of microbial C use efficiency (CUE)) (0.03 < 0.06 mmol CO2-C • mmol MBC−1 • hr−1) and N mineralization (14.8 < 16.0 mg N kg−1 soil). In the early stage of decomposition (0–14 days), mixed residues increased MBC relative to the single residues, while they decreased N mineralization relative to single GN (p ≤ 0.05). These results indicate an increase in microbial substrate CUE and N use efficiency (NUE) in the mixed residues relative to the single residues. This increased efficiency provides a basis for the synthesis of microbial products that contribute to the formation of the stable SOM pool. The SOM stabilization could bring about the SOM accumulation that is lacking under the single-RS application.

Funder

Royal Golden Jubilee (RGJ) Ph.D. Programme

Thailand Research Fund Basic Research Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3