Expression of Genes Related to Plant Hormone Signal Transduction in Jerusalem Artichoke (Helianthus tuberosus L.) Seedlings under Salt Stress

Author:

Yue Yang,Wang Jueyun,Ren Wencai,Zhou Zhaosheng,Long Xiaohua,Gao Xiumei,Rengel ZedORCID

Abstract

Background: Jerusalem artichoke (Helianthus tuberosus L.) is moderately tolerant to salinity stress and has high economic value. The salt tolerance mechanisms of Jerusalem artichoke are still unclear. Especially in the early stage of Jerusalem artichoke exposure to salt stress, gene transcription is likely to undergo large changes. Previous studies have hinted at the importance of temporal expression analysis in plant transcriptome research. Elucidating these changes may be of great significance to understanding the salt tolerance mechanisms of it. Results: We obtained high-quality transcriptome from leaves and roots of Jerusalem artichoke exposed to salinity (300 mM NaCl) for 0 h (hour), 6 h, 12 h, 24 h, and 48 h, with 150 and 129 unigenes and 9023 DEGs (differentially expressed genes). The RNA-seq data were clustered into time-dependent groups (nine clusters each in leaves and roots); gene functions were distributed evenly among them. KEGG enrichment analysis showed the genes related to plant hormone signal transduction were enriched in almost all treatment comparisons. Under salt stress, genes belonging to PYL (abscisic acid receptor PYR/PYL family), PP2C (Type 2C protein phosphatases), GH3 (Gretchen Hagen3), ETR (ethylene receptor), EIN2/3 (ethylene-insensitive protein 2/3), JAZ (genes such as jasmonate ZIM-domain gene), and MYC2 (Transcription factor MYC2) had extremely similar expression patterns. The results of qRT-PCR of 12 randomly selected and function known genes confirmed the accuracy of RNA-seq. Conclusions: Under the influence of high salinity (300 mM) environment, Jerusalem artichoke suffer serious damage in a short period of time. Based on the expression of genes on the time scale, we found that the distribution of gene functions in time is relatively even. Upregulation of the phytohormone signal transduction had a crucial role in the response of Jerusalem artichoke seedlings to salt stress, and the genes of abscisic acid, auxin, ethylene, and jasmonic acid had the most obvious change pattern. Research emphasized the regulatory role of hormones under high salt shocks and provided an explorable direction for the study of plant salt tolerance mechanisms.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3