Transcriptome Analysis of ‘Kyoho’ Grapevine Leaves Identifies Heat Response Genes Involved in the Transcriptional Regulation of Photosynthesis and Abscisic Acid

Author:

Guo Rongrong,Lin Ling,Huang Guiyuan,Shi Xiaofang,Wei Rongfu,Han Jiayu,Zhou SihongORCID,Zhang Ying,Xie Taili,Bai Xianjin,Cao XiongjunORCID

Abstract

Grapevine is a popular cultivated fruit throughout the world and heat stress is one of the most serious threats to viticulture. However, transcriptional responses, such as molecular properties of photosynthesis and abscisic acid biosynthesis, metabolism and signal transduction pathway of grapevine to heat stress, are still poorly understood. In this study, RNA-seq was carried out for thermostabilized grapevine ‘Kyoho’ leaves. Results showed that 685 and 469 genes were commonly down-regulated and up-regulated at three sampling time-points. The light-dependent reactions of photosynthesis was significantly enriched in up-regulated DEGs at 1 hpt and down-regulated DEGs at R24 hpt. Heat stress impaired the photosynthetic capacity of grapevine leaves, and there was a significant positive relationship between photosynthesis and stomatal conductance at short-term post-heat stress treatment, but the inhibition of HS on Pn was non-stomata limitation for a longer period. Photosystem (PS)Ⅱ was more sensitive to heat stress than PSⅠ, and PsbP, as well as Psb28, played important roles in response to heat stress. The abscisic acid (ABA) content in heat-stress-treated Kyoho plants was higher than that in the control at 1 hpt, but less in heat-stress-treated plants at 4 and R24 hpt, which was regulated by numerous genes involved in the ABA biosynthesis and catabolism pathways. These results help to understand the influence of heat stress on photosynthesis and ABA biosynthesis, metabolism and signal transduction pathway.

Funder

National Natural Science Foundation of China

Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3