Interactive Effects of Light and Nitrogen on Pakchoi (Brassica chinensis L.) Growth and Soil Enzyme Activity in an Underground Environment

Author:

Li Songsong,Liu Chao,Tan XiaoORCID,Tan BoORCID,He Yuxin,Li Naiwen

Abstract

Light conditions and nitrogen fertilizer are crucial for plant growth, especially in the underground situations without sunlight and nitrogen deposition. In this paper, the effects of photoperiod (12 h and 16 h lighting time per day), light intensity (200, 300 and 400 μmol m−2 s−1) and nitrogen addition (0, 0.15, 0.3 and 0.45 g N kg−1 soil) on pakchoi growth and specific soil enzyme activity were investigated. The results demonstrated that there were strong interactive effects of light intensity and nitrogen addition on plant yield. The plant yield changed parabolically with increasing nitrogen addition when a light intensity was given between 200 and 300 μmol m−2 s−1, while the yield decreased linearly with increasing nitrogen application under the light intensity of 400 μmol m−2 s−1. The combination of 16 h photoperiod, 300 μmol m−2 s−1 light intensity and 0.3 g N kg−1 soil nitrogen addition was the best for pakchoi growth. The investigation of soil enzyme showed that the activity of urease responded negatively to nitrogen addition, whereas the activity of phosphatase had positive correlation with light intensity but was not affected by nitrogen addition. Our results suggested that the toxic effect of excessive nitrogen was a better explanation for the interactive effects of light and nitrogen than the plant-microbe interaction framework. The critical toxicity level of nitrogen for pakchoi was determined and showed negative correlation with light intensity.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3