Abstract
The effect of the entomopathogenic fungus Beauveria bassiana (BB-12) on the biological characteristics of Tamarixia radiata parasitizing Diaphorina citri was studied under laboratory conditions. Twenty 3rd–5th instar nymphs were exposed to a single already-mated female parasitoid (1 day old) and removed after 24 h. Subsequently, the nymphs were sprayed at 1, 24 and 48 h post-exposure with 1 × 108 conidial mL−1 suspension. The percentage of parasitism recorded was 22%, 35% and 41% at 1, 24 and 48 h, respectively. The emergence rate varied between 28%, 51% and 49% at 1, 24 and 48 h, respectively. In a subsequent experiment, nymphs of D. citri were sprayed with 1 × 108 conidial mL−1 suspension and then exposed to T. radiata at 1, 24 and 48 h post-spraying to allow for parasitism to occur. The percentage of parasitism recorded was 18%, 27% and 28% at 1, 24 and 48 h, respectively, significantly lower than the parasitism rate recorded in the control (48%). The percentage of emergence varied between 24%, 44% and 45% at 1, 24 and 48 h, respectively. In both experiments, no significant difference was observed in the pre-adult duration (days) and the sex ratio of F1 generation. Meanwhile, significant differences were observed in the longevity of the F1 generation of females and males of T. radiata in a treatment consisting of spraying the fungal suspension and the control. Overall, the findings of the current study revealed a negative interaction between T. radiata and B. bassiana in controlling D. citri nymphs. This outcome is believed to be a result of the antagonistic effects of B. bassiana on the developmental process of the pre-adult stages of the parasitoid. However, our results also show that with a properly timed application (allowing parasitism to occur over an extended period of time before the application of the fungus), T. radiata could potentially be used in combination with B. bassiana for the successful biological control of D. citri. This should be carried out in order to minimize the potentially negative interactions between these two biological agents.
Funder
National Key Projects of R & D of China
Subject
Agronomy and Crop Science