Accumulation and Distribution of Fertilizer Nitrogen and Nodule-Fixed Nitrogen in Soybeans with Dual Root Systems

Author:

Zhang Rui,Wang Cong,Teng Wenzhi,Wang Jing,Lyu Xiaochen,Dong Shoukun,Kang Shuang,Gong Zhenping,Ma Chunmei

Abstract

The soybean (Glycine max L. Merr.) is a crop with a high demand for nitrogen (N). The root nodules that form in soybeans can fix atmospheric N effectively, yet the goal of achieving high yields cannot be met by relying solely on nodule-fixed N. Nonetheless, the application of N fertilizer may inhibit nodule formation and biological N fixation (BNF), but the underpinning mechanisms are still unclear. In this study, we grafted the roots of non-nodulated soybeans onto nodulated soybeans to generate plants with dual root system. The experiment included three treatments conducted under sand culture conditions with NO 3 − and NH 4 + as N sources. Treatment I: The non-nodulated roots on one side received 50 mg·L−1 15 NO 3 − or 15NH4+, and the nodulated roots on the other side were not treated. Treatment II: The non-nodulated roots received 50 mg·L−1 15 NO 3 − or 15 NH 4 + , and the nodulated roots received 50 mg·L−1 14 NO 3 − or 14 NH 4 + . Treatment III: Both non-nodulated and nodulated roots received 50 mg·L−1 15 NO 3 − or 15 NH 4 + . The results showed the following: (1) Up to 81.5%–87.1% of the N absorbed by the soybean roots and fixed by the root nodules was allocated to shoot growth, leaving 12.9%–18.5% for root and nodule growth. Soybeans preferentially used fertilizer N in the presence of a NO 3 − or NH 4 + supply. After the absorbed fertilizer N and nodule-fixed N was transported to the shoots, a portion of it was redistributed to the roots and nodules. The N required for root growth was primarily derived from the NO 3 − or NH 4 + assimilated by the roots and the N fixed by the nodules, with a small portion translocated from the shoots. The N required for nodule growth was primarily contributed by nodule-fixed N with a small portion translocated from the shoots, whereas the NO 3 − or NH 4 + that was assimilated by the roots was not directly supplied to the nodules. (2) Based on observations of the shoots and one side of the roots and nodules in the dual root system as an N translocation system, we proposed a method for calculating the N translocation from soybean shoots to roots and nodules during the R1–R5 stages based on the difference in the 15N abundance. Our calculations showed that when adding N at a concentration of 50 mg·L−1, the N translocated from the shoots during the R1–R5 stages accounts for 29.6%–52.3% of the N accumulation in nodulated roots (Rootn) and 9.4%–16.6% of the N accumulation in Nodulen of soybeans. Through the study of this experiment, the absorption, distribution and redistribution characteristics of fertilizer N and root nodule N fixation in soybean can be clarified, providing a theoretical reference for analyzing the mechanisms of the interaction between fertilizer N and nodule-fixed N.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3