Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning

Author:

Mancini Adriano1ORCID,Solfanelli Francesco2ORCID,Coviello Luca3,Martini Francesco Maria2,Mandolesi Serena4ORCID,Zanoli Raffaele2ORCID

Affiliation:

1. Dipartimento di Ingegneria Dell’Informazione (DII), Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

2. Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy

3. Università di Trento, Via Sommarive 5, 38123 Trento, Italy

4. Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica (SIMAU), Università Politecnica delle Marche 12, Via Brecce Bianche, 60131 Ancona, Italy

Abstract

Yield prediction is a crucial activity in scheduling agronomic operations and in informing the management and financial decisions of a wide range of stakeholders of the organic durum wheat supply chain. This research aims to develop a yield forecasting system by combining vegetation index time-series data from Sentinel-2 L2A time-series data, field-measured yields, and deep learning techniques. Remotely sensed data over a season could be, in general, noisy and characterized by a variable density due to weather conditions. This problem was mitigated using Functional Principal Component Analysis (FPCA). We obtained a functional representation of acquired data, and starting from this, we tried to apply deep learning to predict the crop yield. We used a Convolutional Neural Network (CNN) approach, starting from images that embed temporal and spectral dimensions. This representation does not require one to a priori select a vegetation index that, typically, is task-dependent. The results have been also compared with classical approaches as Partial Least Squares (PLS) on the main reference vegetation indexes such as the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge index (NDRE), considering both in-season and end-season scenarios. The obtained results show that the image-based representation of multi-spectral time series could be an effective method to estimate the yield, also, in the middle stage of cropping with R2 values greater than 0.83. The developed model could be used to estimate yield the neighbor fields characterized by similar setups in terms of the crop, variety, soil, and, of course, management.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3