Weeding Effectiveness and Changes in Soil Physical Properties Using Inter-Row Hoeing and a Robot

Author:

Bručienė IndrėORCID,Buragienė Sidona,Šarauskis EgidijusORCID

Abstract

Weed control is one of the most important technological operations to ensure crop yield and quality in ecological sugar beet production. However, conventional mechanical weed control is labor- and time-intensive and has adverse effects on the soil and the environment. The aim of this study was to experimentally investigate the influence of conventional mechanical and robotic weed control systems on soil properties and to assess the effectiveness of these different weed control methods in ecological sugar beet production. This study examines two different weed control systems: robotic weed control (RWC) and conventional weed control (CWC). Field experimental studies were carried out with a solar-powered field robot and conventional inter-row cultivation (CWC1—first cultivation, CWC2—second cultivation) to determine the effectiveness of mechanical weed control in ecological sugar beet crops. The influence of different weed control systems on the physical properties of the soil in the contact zone between the soil and the tires of weed control machines was investigated. The results showed that the average weed control effectiveness inter-row was higher in the RWC (81%) compared to that in the CWC2 (46%). The overall weed control effectiveness of the robotic weed control in the sugar beet inter-row and intra-row was around 49%. The measurements showed that the weed control process reduced the soil moisture and temperature in all treatments tested. Experimental studies have confirmed that the weed control operation, although carried out with relatively lightweight robots, also has an impact on soil bulk density. RWC weed control resulted in an average increase of 0.16 g cm–3 in soil bulk density in the topsoil layer (0–10 cm) after weeding. Both CWC1 and RWC increased soil penetration resistance (PR). For CWC1, the average increase in topsoil PR after weed control was 20%, while for RWC, the increase was marginal, only around 1%. Automated precision weed control by self-propelled solar-powered field robots is an important solution to reduce the need for tedious and time-consuming manual weeding.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference78 articles.

1. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics#Total_organic_area

2. https://ec.europa.eu/eurostat/data/database?node_code=org

3. Weed Control in Clean Agriculture: A Review1

4. Sugar Beet-Weed Interactions;Mesbah,1994

5. Weed Control in Sugarbeet

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3