Weather-Based Statistical and Neural Network Tools for Forecasting Rice Yields in Major Growing Districts of Karnataka

Author:

Thimmegowda Mathadadoddi Nanjundegowda1ORCID,Manjunatha Melekote Hanumanthaiah1,Huggi Lingaraj1ORCID,Shivaramu Huchahanumegowdanapalya Sanjeevaiah2,Soumya Dadireddihalli Venkatappa1,Nagesha Lingegowda1,Padmashri Hejjaji Sreekanthamurthy3

Affiliation:

1. AICRP on Agrometeorology, University of Agricultural Sciences, GKVK, Bengaluru 560065, India

2. College of Horticulture, University of Agricultural Sciences, Kolar 563103, India

3. Directorate of Research, university of Agricultural Sciences, Gkvk, Bengaluru 560065, India

Abstract

Two multivariate models were compared to assess their yield predictability based on long-term (1980–2021) rice yield and weather datasets over eleven districts of Karnataka. Simple multiple linear regression (SMLR) and artificial neural network models (ANN) were calibrated (1980–2019 data) and validated (2019–2020 data), and yields were forecasted (2021). An intercomparison of the models revealed better yield predictability with ANN, as the observed deviations were smaller (−37.1 to 21.3%, 4% mean deviation) compared to SMLR (−2.5 to 35.0%, 16% mean deviation). Further, district-wise yield forecasting using ANN indicated an underestimation of yield, with higher errors in Mysuru (−0.2%), Uttara Kannada (−1.5%), Hassan (−0.1%), Ballari (−1.5%), and Belagavi (−15.3%) and overestimations in the remaining districts (0.0 to 4.2%) in 2018. Likewise, in 2019 the yields were underestimated in Kodagu (−0.6%), Shivamogga (−0.1%), Davanagere (−0.7%), Hassan (−0.2%), Ballari (−5.1%), and Belagavi (−10.8%) and overestimated for the other five districts (0.0 to 4.8%). Such model yield underestimations are related to the farmers’ yield improvement practices carried out under adverse weather conditions, which were not considered by the model while forecasting. As the deviations are in an acceptable range, they prove the better applicability of ANN for yield forecasting and crop management planning in addition to its use for regional agricultural policy making.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference69 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3