Potassium Phosphite Induces Tolerance to Water Deficit Combined with High Irradiance in Soybean Plants

Author:

Batista Priscila Ferreira1,da Costa Alan Carlos12,da Silva Adinan Alves12ORCID,Almeida Gabriel Martins1,Rodrigues Maria Fernanda Marques1,Santos Emily Carolina Duarte1,Rodrigues Arthur Almeida3,Müller Caroline4ORCID

Affiliation:

1. Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal Goiano–Campus Rio Verde, Rio Verde 75901-970, GO, Brazil

2. Centro de Excelência em Agricultura Exponencial (CEAGRE), Rio Verde 75905-360, GO, Brazil

3. Laboratório de Anatomia Vegetal, Instituto Federal Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil

4. Universidade Federal da Fronteira Sul (UFFS)-Campus Erechim, Erechim 99700-000, RS, Brazil

Abstract

Changes in plant metabolism due to water deficit combined with other stresses, such as high irradiance and high temperatures, cause damage to the physiology and development of crops, which can lead to significant yield losses. The aim of this study was to determine the potential of potassium phosphite (PP) to induce tolerance to water deficit combined with high irradiance in soybean plants. The experiment was carried out in an acclimatized growth chamber. Soybean plants, upon reaching the R1 developmental stage, received the following treatments: PP application (0 L ha−1–control; 0.6 L ha−1 PP; and 1.2 L ha−1 PP), two levels of PAR irradiance (650 µmol m−2 s−1–control; and 1500 µmol m−2 s−1–high irradiance (HI)), and three water availability levels (90% of field capacity (FC), and water deficit at 40% FC and 50% FC). The treatments were maintained for 12 days. The PP increased the photosynthetic rate of plants submitted to a dosage of 1.2 L ha−1 and stresses of 50% FC + HI. PP also decreased the intensity of lipid peroxidation, and rate of electrolyte leakage, which suggests stability of cell membranes. These responses may have occurred due to the activation of the antioxidant enzymes superoxide dismutase and peroxidase. Furthermore, the application of PP increased the proline concentrations, suggesting osmotic adjustment in response to stress. These results provide the first record of PP-induced tolerance in plants under combined water and HI stresses. PP proves to be a potential alternative method to reduce the harmful effects caused by the combined stresses of water deficit and high irradiance in soybean.

Funder

National Council for Scientific and Technological Development

Instituto Federal Goiano, Campus Rio Verde

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3