Inconsistent Yield Response of Forage Sorghum to Tillage and Row Arrangement

Author:

Nieman Christine C.1ORCID,Franco Jose G.2ORCID,Raper Randy L.3

Affiliation:

1. USDA-ARS Dale Bumpers Small Farms Research Center, 6883 South Hwy 23, Booneville, AR 72927, USA

2. USDA-ARS Dairy Forage Research Center, 1925 Linden Dr., Madison, WI 53706, USA

3. Oklahoma Agricultural Experiment Station, Field and Research Service Units, Oklahoma State University, 139 Agriculture Hall, Stillwater, OK 74078, USA

Abstract

Forage sorghum is an alternative source for biofuel feedstock production and may also provide forage for livestock operations. Introducing biofuel feedstock as a dual-use forage to livestock operations has the potential to increase the adoption of biofuel feedstock production. However, additional technical agronomic information focusing on tillage, row arrangement, and harvest date for forage sorghum planted into pasturelands intended for dual use is needed. Three tillage treatments, disking and rototilling (RT), chisel plow (CP), and no tillage (NT), and two row arrangement treatments, single-row planting with 76.2 cm rows and twin rows of 17.8 cm on 76.2 cm centers, were tested for effects on forage sorghum yield in a 3-cut system. This study tested two sites in Booneville, AR, from 2010 to 2012. Several interactions with year were detected, likely due to large precipitation differences within and among years. The year greatly affected the yield, with greater (p < 0.05) yields in year 1 compared to years 2 and 3 in both locations. No till resulted in lower yields in some years and harvest dates, though no clear trend was detected among tillage treatments over years. Twin rows generally did not improve yield, except for the third harvest date at one location. No strong trends for tillage or row arrangement effects were observed in this study. Inconsistencies may have resulted from the strong influence of year or interactions of multiple factors, which may challenge producers interested in utilizing forage sorghum for biofuels and livestock feed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3