Changes of Soil Water and Heat Transport and Yield of Tomato (Solanum lycopersicum) in Greenhouses with Micro-Sprinkler Irrigation under Plastic Film

Author:

Zhang MingzhiORCID,Li YuanORCID,Liu Jianfei,Wang JingweiORCID,Zhang Zhenxing,Xiao Na

Abstract

This study aimed to expound the changes in soil water flow, heat transport, and tomato production under micro-sprinkler irrigation and plastic film (MSPF) conditions. The effects of different irrigation amounts (I1:0.7 Epan; I2:1.0 Epan; and I3:1.2 Epan (Epan is the cumulative evaporation from a 20 cm diameter standard pan, mm)) on soil water, soil temperature, and tomato yield were studied. A completely randomized trial design was used; meanwhile, the drip irrigation under plastic film (CK1) and micro-sprinkler irrigation without mulch film (CK2) were used as controls. The results showed that the shape of soil moisture was banded under MSPF; the soil wetting range was larger than that of CK1 and CK2 in the profile of MSPF. The change range of 5 cm soil temperature of MSPF 1–5 days after irrigation was 4.05 °C. The change range of 5 cm soil temperature of MSPF was lower than that of CK1 from 1 to 5 days after irrigation. During the growth period of spring and autumn tomato, the average soil moisture content of 0–40 cm with CK1 was 1.97% and 3.83% (spring and autumn, respectively) higher than that of MSPF, and the average soil temperature of 5–25 cm was 2.36% and 1.66% (spring and autumn, respectively) lower than that of MSPF. Compared with CK2, the average soil moisture content of 0–40 cm under MSPF increased by 8.30% and 3.83% (spring and autumn, respectively), and the average soil temperature of 5–25 cm under MSPF increased by 5.85% and 1.68% (spring and autumn, respectively). The spring and autumn tomato yield of MSPF was significantly higher than that of CK1 by 19.39% and 4.54%, respectively. The spring and autumn tomato yield of MSPF were higher than that of CK2 by about 20.46% and 49.22%, respectively. With an increase in the irrigation amount of MSPF, the soil moisture and yield of spring and autumn tomato increase; the soil temperature and water use efficiency of spring and autumn tomato decrease. Considered comprehensively, the MSPF can be used as one of the methods of greenhouse tomato micro-irrigation, and 1.0 Epan is recommended for irrigation parameters in northwest China facility agriculture.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3