Harnessing the Eco-Friendly Potential of Asparagus racemosus Leaf Extract Fabricated Ni/Ni(OH)2 Nanoparticles for Sustainable Seed Germination and Seedling Growth of Vigna radiata

Author:

Parveen Ashna1ORCID,Sonkar Sashi2,Sarangi Prakash Kumar3ORCID,Singh Akhilesh Kumar4ORCID,Sahoo Uttam Kumar5ORCID,Gupta Rahul1ORCID,Prus Piotr6ORCID,Imbrea Florin7,Șmuleac Laura7,Pașcalău Raul7

Affiliation:

1. Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India

2. Department of Botany, Bankim Sardar College, Tangrakhali 743329, India

3. College of Agriculture, Central Agricultural University, Imphal 795004, India

4. Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India

5. Department of Forestry, Mizoram University, Aizawl 796004, India

6. Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland

7. Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania

Abstract

The increasing utilization of nanoparticles (NPs) in agricultural practices has led to a surge in demand for nano-based products. Herein, we investigate the dose-dependent impacts of nickel hydroxide (Ni(OH)2)/nickel (Ni) NPs, synthesized using Asparagus racemosus Linn. leaf extract, on the seed germination and growth of Vigna radiata (Linn.) Wilczek. In all seed samples, 100% germination was observed in Treatment 1 (2.74 mg mL−1) and Treatment 2 (5.48 mg mL−1) of Ni/Ni(OH)2 NPs. However, in Treatment 3 (8.22 mg mL−1) and Treatment 4 (10.96 mg mL−1), the germination percentage was lower, reaching 80%. Further, Treatment 5 (13.70 mg mL−1) of Ni/Ni(OH)2 NPs showed a reduced germination rate of 60%, indicating a prolonged germination process at higher concentrations. Remarkably, the length of seedlings showed a significant increase in all experimental treatments compared to the control group, which received 5 mL of distilled water. Among the investigated parameters, Treatment 2 demonstrated the most promising outcomes, exhibiting the highest chlorophyll stability index (23.73%) and membrane stability index (67.89%) values, as well as the lowest root ion leakage (24.75%). These findings indicate that Ni/Ni(OH)2 has the capacity to enhance seed germination and foster seedling growth.

Funder

Increasing the impact of excellence research on the capacity for Innovation and Technology Transfer within USV Timiosoara

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3