Effects of Land Use Change on Soil Aggregate Stability and Erodibility in the Karst Region of Southwest China

Author:

Li Meiting1ORCID,Wang Keqin1,Ma Xiaoyi1,Fan Mingsi1,Song Yali1ORCID

Affiliation:

1. College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China

Abstract

Differences in land use type and chronological age affect soil properties and plant community characteristics, which may influence soil structural stability and erodibility. However, knowledge on the effects of soil physicochemical properties on soil aggregate stability and erodibility at different land use years is limited. This study selected five land use types: corn field (Year 38th-y), corn intercropped with cabbage field (Year 38th-y + b), fruit and meridian forest (Year 6th-jgl), naturally restored vegetation (Year 6th-zr), and artificial forest (Year 7th-rgl) in the karst landscape of the Chishui River Basin in Yunnan Province. We aimed to identify the influencing factors of soil stability and erodibility under different land use time series. The results indicated that the mean weight diameter (MWD), the geometric mean diameter (GMD), and soil structural stability index (SSI values) were highest in Y6th-zr and lowest in Y7th-rgl. Conversely, the erodibility K value was lowest in Y6th-zr, suggesting that the soil structure in Y6th-zr exhibited greater stability, whereas soil stability in Y7th-rgl was lower. Redundancy and throughput analyses revealed that organic carbon and water-stable aggregates > 2.0 mm content had higher vector values. Soil bulk density, total nitrogen, organic carbon, and soil texture content were the main factors contributing to soil stability variation (0.338–0.646). Additionally, total nitrogen, organic carbon, total phosphorus, and soil texture content drove the variation in K values (0.15–1.311). Natural vegetation restoration measures can enhance soil structure to a certain extent. These findings highlight changes in soil aggregate stability and erodibility over different land use durations. The research results have important theoretical and practical significance for understanding the differences in soil erosion and soil restoration under different land use patterns in the karst landscapes of southwest China.

Funder

Science and Technology Project of Yunnan Province

the First-Class Discipline Construction Project of Yunnan Province

The National Undergraduate Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3