Spatial Heterogeneity Analysis and Risk Assessment of Potentially Toxic Elements in Soils of Typical Green Tea Plantations

Author:

Xu Yaonan12,Wang Ying1,Shafi Abbas3,He Mingjiang4,He Lizhi1,Liu Dan1

Affiliation:

1. College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China

2. Land Survey and Mapping Team of Shangyu Branch of Shaoxing Municipal Bureau of Natural Resources and Planning, Shaoxing 312300, China

3. The Institute of Computer Sciences, The University of Agriculture Peshawar, Peshawar 25000, Pakistan

4. Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

Abstract

The spatial heterogeneity of potentially toxic elements (PTEs) in a typical green tea-producing area in Zhejiang was investigated with application of geostatistics. The positive matrix factorization (PMF) was conducted for analysis of pollution sources and risk assessment of the soil of the tea garden. The results revealed that 93.52% of the study area did not exceed the PTEs risk screening value in the soil pollution risk control standard of agricultural land. The results of the spatial heterogeneity analysis showed that Cd and Pb had moderate spatial auto-correlation, exhibiting similar spatial distribution patterns. The high-value locations were distributed in the southeast of the study area, while low-value locations were distributed in the southwest of the study area. The Cr, As, and Hg had strong spatial auto-correlation, while Cr and As had similar spatial distribution patterns whose high-value areas and low-value areas were concentrated in the west and center of the study area, respectively. The Cd, Pb, and As originated from the agricultural source, transportation source, and industrial source, respectively, while Cr and Hg were from the natural source on the basis of the results of the PMF model. The results of a potential ecological risk assessment revealed that five PTEs in the study area were of low potential risk. The single-factor ecological risk ranking was Cd > As > Hg > Cr > Pb. The overall ecological risk in the study area was slight. The human health risk model indicates that there was a non-carcinogenic risk for children in the study area, and the high-value area was concentrated in the northwest of the study area. It is concluded that emphasis shall be given to excessive Cd caused by agricultural sources in the southeast of the study area, and control and monitoring will be strengthened in the northwestern part of the study area. The relevant measures for prevention of soil pollution must be conducted.

Funder

Natural Science Foundation of China

Science and Technology Program of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3