Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria

Author:

Benchelali Soumia,Benkherbache NadjatORCID,Mefti MohamedORCID,Ronga DomenicoORCID,Louahdi Nasreddine,Russo Mario,Pecchioni NicolaORCID

Abstract

The proper and sustainable management of nitrogen fertilization is one of the most common problems of cereal cultivation in semiarid regions, which are characterized by a wide variability in climatic conditions. The current work was conducted to evaluate the effects of nitrogen fertilization on the agronomic and economic aspects of durum wheat cultivated under rainfed semiarid conditions in Algeria and to determine the most efficient nitrogen use efficiency (NUE) among four genotypes that are widespread in the country (tall and short, old and modern genotypes). The four genotypes, Bousselam, MBB, Megress, and GTAdur, were investigated under four nitrogen rates from 0 to 120 kg N ha−1 during three cropping seasons (2016 to 2018). The results indicate that the total nitrogen uptake at maturity (NM), nitrogen uptake by grain (NG), nitrogen harvest index (NHI), NUE and its components, such as nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE), were significantly affected by year, genotype, and nitrogen level. From this study, it appears that higher nitrogen rates improved NM and NG. However, no effects on either grain yield or marginal net return (MNR) were observed; conversely, increased nitrogen levels produced a 13% reduction in the economic return. In other words, in the North African environment, the response to nitrogen is more evident in quality than in yield, which in turn is dependent on the yearly weather conditions and cultivated genotypes. Moreover, nitrogen negatively affected NUE and its components (NUpE, NUtE). On average, NUE displayed low values (14.77 kg kg−1), mostly irregular and highly dependent on weather conditions; in the best year, it did not exceed 60% (19.87 kg kg−1) of the global average value of 33 kg kg−1. Moreover, the modern genotypes Megress (tall) and GTAdur (short) showed the best capacity to tolerate different nitrogen conditions and water shortages, providing relatively superior yields, as well as more effective N use from fertilizers and the soil than the other two genotypes.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference56 articles.

1. La production céréalière en Algérie: Les principales caractéristiques;Djermoun;Rev. Nat. Technol.,2009

2. Geography of the durum wheat crop;Ranieri;Pastaria Int.,2015

3. ITGC—Institut Technique des Grandes Cultures http://www.itgc.dz/

4. Rapport de Synthèse sur L’agriculture en Algérie. CIHEAM-IAMM https://hal.archives-ouvertes.fr/hal-02137632

5. Data in Food and Agriculture Organization http://www.fao.org/faostat/fr/#data/QC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3