Research on the Classification of Complex Wheat Fields Based on Multi-Scale Feature Fusion

Author:

Mu Fei,Chu Hongli,Shi Shuaiqi,Yuan Minxin,Liu Qi,Yang FuzengORCID

Abstract

This study uses UAV multi-spectral remote sensing images to carry out ground object classification research in complex wheat field scenes with diverse varieties. Compared with satellite remote sensing, the high spatial resolution remote sensing images obtained by UAVs at low altitudes are rich in detailed information. In addition, different varieties of wheat have different traits, which makes it easy to misclassify categories in the process of semantic segmentation, which reduces the classification accuracy and affects the classification effect of ground object. In order to effectively improve the classification accuracy of ground object in complex wheat field scenes, two Multi-Scale U-Nets based on multi-scale feature fusion are proposed. Multi-Scale U-Net1 is a network model that adds a multi-scale feature fusion block in the copy process between U-Net encoding and decoding. Multi-Scale U-Net2 is a network model that adds a multi-scale feature fusion block before U-Net inputs an image. Firstly, the wheat field planting area of Institute of Water-saving Agriculture in Arid Areas of China (IWSA), Northwest A&F University was selected as the research area. The research area was planted with a variety of wheat with various types of traits, and some traits were quite different from one another. Then, multi-spectral remote sensing images of different high spatial resolutions in the study area were obtained by UAV and transformed into a data set for training, validation, and testing of network models. The research results showed that the overall accuracy (OA) of the two Multi-Scale U-Nets reached 94.97% and 95.26%, respectively. Compared with U-Net, they can complete the classification of ground object in complex wheat field scenes with higher accuracy. In addition, it was also found that within the effective range, with the reduction of the spatial resolution of remote sensing images, the classification of ground object is better.

Funder

Major Science and Technology Project of Shaanxi Province of China

National Key R&D Program of China “the 13th Five-Year Plan”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3