Calcium- and Magnesium-Enriched Organic Fertilizer and Plant Growth-Promoting Rhizobacteria Affect Soil Nutrient Availability, Plant Nutrient Uptake, and Secondary Metabolite Production in Aloe vera (Aloe barbadensis Miller) Grown under Field Conditions

Author:

Nikolaou Christina N.1ORCID,Chatziartemiou Artemios2,Tsiknia Myrto1ORCID,Karyda Asimina Georgia3,Ehaliotis Constantinos1,Gasparatos Dionisios1ORCID

Affiliation:

1. Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

2. Voion Aloe vera S.A., 23053 Neapolis, Greece

3. Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

Abstract

This work investigates the effects of an organic fertilizer enriched in Ca and Mg and two bacterial inoculants, applied alone and in combination, on soil fertility, plant growth, nutrition, and production of secondary metabolites, namely, acemannan and total phenolic compounds (TPCs), by Aloe vera (Aloe barbadensis Miller), under field cultivation. The first inoculum consisted of five native bacterial strains (Pseudomonas sp., Enterobacter sp., and three strains of Pantoea sp.), characterized in vitro as putative plant growth promoters, isolated from local organic farming fields of Aloe vera. The second inoculant was a commercial product (BACTILIS-S and HUMOFERT) and consisted of three Bacillus species: B. pumilus, B. amyloliquefaciens, and B. subtilis. The organic fertilizer (HUMO-CAL M-8O) was a mixture of humic and fulvic acids, with an additional CaCO3 (40% w/w) and MgO (4% w/w). The most significant increase in the content of acemannan and TPCs was detected under single application of the organic fertilizer, which was linked to enhanced concentration of Mg and Ca in the leaf gel. The concentration of acemannan tended to be increased with the combined application of the organic fertilizer and microbial inoculants. TPCs were significantly increased in both single and combined treatments, seemingly related to Fe concentration in the leaf rinds.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3