Effect of Microwave Treatment at 2.45 GHz on Soil Physicochemical Properties and Bacterial Community Characteristics in Phaeozems of Northeast China

Author:

Li Qi12,Sun Xiaohe123ORCID,Zhao Chunjiang234,Yang Shuo13,Gu Chenchen13,Zhai Changyuan134ORCID

Affiliation:

1. Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China

3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

4. Nongxin (Nanjing) Smart Agriculture Research Institute Co., Ltd., Nanjing 211800, China

Abstract

Microwave irradiation is a new means of non-toxic, residue-free, and green soil disinfection that prevents and controls soil diseases, insects, and weeds and helps to improve crop quality and yield. Soil microorganisms, as an important part of the ecosystem, are closely related to crop growth and health. To investigate the changes of soil physicochemical properties and microbial communities during microwave soil disinfection for different time periods, phaeozems from northeastern China were selected for microwave treatment at 3, 6, 9, and 12 min, and their physicochemical properties were measured after 30 days of incubation. The test soils (0–20 cm) after 30 days of incubation were used, and high-throughput sequencing was performed to detect changes in their soil microbial structure under different microwave time treatments. Microwave treatment had significant effects on soil pH, nitrate (NO3--N), ammonium (NH4+-N), and available phosphorus (AP) content. As shown by the Shannon, Chao, and Ace indices, microwave treatment at 3 min had the lowest effect on bacterial diversity compared to the control treatment (CK). Shannon index decreased by 9.92%, 24.56%, 34.37%, and 38.43% after 3, 6, 9, and 12 min microwave treatments, respectively; Chao index decreased by 7.69%, 18.13%, 32.21%, and 57.91%, respectively; Ace index decreased by 6.40%, 6.98%, 20.89%, and 52.07%, respectively. The relative abundance of beneficial soil microorganisms Micromonospora, Fictibacillus, Paenibacillus, and Bacillus (Firmicutes) increased significantly compared to CK. The results indicated that although the microwave treatment altered the soil microbial community, beneficial soil microorganisms showed faster recovery. In addition, pH, soil organic carbon (SOC), total nitrogen ratio (C/N), soil-available phosphorus (AP), and NO3--N were important factors affecting bacterial community diversity and composition following microwave treatment, and bacterial community composition was driven by soil chemical properties such as soil pH, SOC, C/N, and NO3--N. Microwave treatments at different time periods affected soil microbial community structure to different degrees, and soil bacteria of copiotrophic taxa (e.g., Firmicutes) were relatively higher than the control. Overall, microwave treatment from 3–6 min may be more suitable for soil disinfection. The study of the effect of microwave on soil physicochemical properties and bacterial microbial community not only provides some scientific reference for the rational application of microwave soil disinfection, but also has positive significance for soil-borne disease control and crop quality improvement.

Funder

Jiangsu Province key Research and Development Program project

Strategic Pilot Science and Technology Program of Chinese Academy of Sciences

Jiangsu Province Agricultural Science and technology independent Innovation fund project

Reform and Development Project topic

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference89 articles.

1. Issues for cropping and agricultural science in the next 20 years;Fischer;Field Crops Res.,2018

2. A new integrated soil disinfection machine improves the uniformity of dazomet in soil;Fang;Sci. Agric. Sin.,2021

3. The occurrence of herbicide-resistant weeds worldwide;Heap;Pestic Sci.,1997

4. Gai, Z., Sun, L., and Wei, D. (2007). Effects of Microwave on Functional Diversity of Soil Microorganisms and Their Communities, Henan Agricultural Sciences.

5. Microwave sterilization of biosolids and its mechanism;Fu;J. Microw.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3