Surface Soil Moisture Retrieval Using Sentinel-1 SAR Data for Crop Planning in Kosi River Basin of North Bihar

Author:

Parida Bikash RanjanORCID,Pandey Arvind Chandra,Kumar Randhir,Kumar SouravORCID

Abstract

Surface Soil Moisture (SSM) is a key factor for understanding the physical process between the land surface and atmosphere. With the advancement of Synthetic Aperture Radar (SAR) technology and backscattering models, retrieval of SSM over the land surface at higher spatial resolution became effective and accurate. This study examines the potential of C-band Sentinel-1 SAR data to derive SSM in a dry season (February 2020) over bare soil and vegetated agricultural fields in the Kosi River Basin (KRB) in North Bihar. Field campaigns were conducted simultaneously with Sentinel–1A acquisition date, and measurements comprised 54 in-situ sampling plots for the top of the soil (0–7.6 cm depth) using time-domain reflectometry (TDR–300). The modified Dubois model was employed to estimate relative soil permittivity from the backscatter values (σ°) of VV polarization. With the help of Topp’s model, volumetric SSM (m3/m3) was derived for all areas with normalized difference vegetation index (NDVI) less than 0.4 that majorly covered bare land or sparse vegetation. The key findings demonstrated that model-derived SSM was well correlated with the in-situ SSM with the coefficient of determination (R2) of 0.77 and root mean square error (RMSE) of 0.06 m3/m3. The spatial distribution of SSM ranged from 0.05 to 0.5 m3/m3 over the KRB, and the highest moisture was found in the Kosi Megafan. The modified Dubois model was effective in providing SSM from Sentinel–1A data in bare soil and agricultural fields and, thus, supporting use in hydrological, meteorological and crop planning applications.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3