Response of Triticum Vulgare Growth and Nitrogen Allocation to Irrigation Methods and Regimes under Subsoiling Tillage

Author:

Huang Chao1234,Liu Xuchen1234,Gao Yang12ORCID,Chen Haiqing123,Ma Shoutian123,Qin Anzhen123ORCID,Zhang Yingying13,Gao Zile5,Song Yan5,Sun Jinkai5,Liu Zhandong123

Affiliation:

1. Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453003, China

2. Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China

3. Henan Agricultural Efficient Water Field Scientific Observation and Research Station, Xinxiang 453003, China

4. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

5. Henan Yudong Water Conservancy Security Center, Kaifeng 475000, China

Abstract

Subsoiling tillage breaks up the shallow plow layer and thickened plow pan resulting from prolonged crop rotation, thus enhancing the soil tillage layer environment and fostering crop growth. However, these changes in tillage practices are not accompanied by corresponding advancements in irrigation technology. Therefore, this study compared drip irrigation (DI) and micro-sprinkler irrigation (MS) with three watering levels (H, M, L) based on soil water content (70%, 60%, 50% of field capacity) against traditional surface irrigation (CK, 70%FC) to find the most suitable irrigation approach for subsoiling wheat fields. This study found that adjusting irrigation methods and regimes significantly impacted wheat growth and yield. Drip irrigation boosts winter wheat grain yield, harvest index, biomass transfer amount, biomass transfer rate, nitrogen accumulation, nitrogen use efficiency, and nitrogen harvest index significantly compared to surface and micro-sprinkler methods. Drip irrigation, notably the DI-M treatment, significantly enhances winter wheat grain yield by 28.7% compared to CK. Drip irrigation produced optimal results when soil water levels decreased to 60% of the field capacity. This suggests adopting a combination of DI, with irrigation initiated at 60% of field capacity, for enhanced wheat production and resource efficiency.

Funder

Science & Technology Fundamental Resources Investigation Program

Agricultural Science and Technology Innovation Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3