Water-Use Characteristics of Wheat–Maize Rotation System as Affected by Nitrogen Application Rate in North China Plain

Author:

Qin Jingtao12ORCID,Fan Xichao12,Wang Xiaosen12,Jiang Mingliang12,Lv Mouchao12

Affiliation:

1. Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China

2. Key Laboratory of Water-Saving Engineering, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China

Abstract

Reducing the nitrogen (N) application rate and improving water-use efficiency (WUE) are extremely important for sustainable agricultural development in wheat–maize rotation systems in the North China Plain (NCP). We conducted a three-year experiment to investigate the effects of the N application rate on the water-use characteristics of wheat–maize rotation systems in the NCP. The experiment consisted of four N application rates: 250, 167, 84, and 0 kg hm−2, denoted by N3, N2, N1, and N0, respectively. The results showed the following: For the 0–60 cm soil layer, N deficiency could lead to reduced soil water use (SWU) in wheat seasons, but in maize seasons, N deficiency showed no significant effects on SWU in the 0–60 cm layer. For the 60–140 cm soil layer, N deficiency could lead to reduced SWU in wheat seasons, but in maize seasons, the effects of N deficiency on SWU in the 60–140 cm layer varied with the SWC in the 0–60 cm layer. Throughout the three-year experiment, the evapotranspiration (ET), leaf area index (LAI), yield, and WUE of plants receiving low N treatments decreased with the growing season due to the negative effects of low N treatment (N1 and N0) on the soil. The LAI, total ET, grain yield, and WUE were all positively correlated with each other for both wheat and maize. Considering grain yield and WUE, a single-season N application rate of 167 kg hm−2 (N2 treatment) in the NCP could meet the growth needs of the wheat–maize rotation system.

Funder

key R&D and promotion projects in Henan Province, China: Science and Technology Research Projects

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3