Research on Weed Reverse Detection Methods Based on Improved You Only Look Once (YOLO) v8: Preliminary Results

Author:

Liu Hui1,Hou Yushuo2,Zhang Jicheng2ORCID,Zheng Ping2ORCID,Hou Shouyin3

Affiliation:

1. Department of Internet of Things Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

2. College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China

3. College of Engineering, Northeast Agricultural University, Harbin 150030, China

Abstract

The rapid and accurate detection of weeds is the prerequisite and foundation for precision weeding, automation, and intelligent field operations. Due to the wide variety of weeds in the field and their significant morphological differences, most existing detection methods can only recognize major crops and weeds, with a pressing need to enhance accuracy. This study introduces a novel weed detection approach that integrates the GFPN (Green Feature Pyramid Network), Slide Loss, and multi-SEAM (Spatial and Enhancement Attention Modules) to enhance accuracy and improve efficiency. This approach recognizes crop seedlings utilizing an improved YOLO v8 algorithm, followed by the reverse detection of weeds through graphics processing technology. The experimental results demonstrated that the improved YOLO v8 model achieved remarkable performance, with an accuracy of 92.9%, a recall rate of 87.0%, and an F1 score of 90%. The detection speed was approximately 22.47 ms per image. And when shooting from a height ranging from 80 cm to 100 cm in the field test, the crop detection effect was the best. This reverse weed detection method addresses the challenges posed by weed diversity and complexities in image recognition modeling, thereby contributing to the enhancement of automated and intelligent weeding efficiency and quality. It also provides valuable technical support for precision weeding in farmland operations.

Funder

This research was supported by National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3