Genetic Diversity Assessment of Cupressus gigantea W. C. Cheng & L. K. Fu Using Inter-Simple Sequence Repeat Technique

Author:

Ji Ximei12,Jiang Yaxuan2,Li Jianxin2,Lei Pei1,Meng Fanjuan1

Affiliation:

1. Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China

2. College of Life Science, Northeast Forestry University, Harbin 150040, China

Abstract

Cupressus gigantea W. C. Cheng & L. K. Fu is an endemic conifer tree species that is distributed widely along the northern portion of the deep gorge of the Yarlung Tsangbo River on the Tibetan Plateau. However, as a key plant species growing on the Tibetan plateau, C. gigantea has since become an endangered species due to habitat loss and degradation, overexploitation, and other factors. It has been listed as a first-grade national protected wild plant species in China. Accordingly, to conserve this plant species, we should obtain more information on its genetic structure. In this study, the genetic diversity and structure among 67 samples were evaluated by the inter-simple sequence repeat (ISSR) technique. Overall, 78 bands were produced with a molecular length of 200 bp to 3100 bp using 10 ISSR primers. The mean values for the average number of alleles (Na), effective number of alleles (Ne), Nei’s gene diversity (H), and Shannon’s information index (I) were 1.529, 1.348, 0.199, and 0.293, respectively. Additionally, the number of polymorphic loci (NPLs) and percentage of polymorphic loci (PPLs) averaged 41.25 and 52.90, respectively. Further, total variation among populations was 14.2%, while that within populations was 85.8%; accordingly, the within-population genetic differentiation was found to be significant (p < 0.001). These results demonstrated that a genetic structure model with K = 3 fitted the data best, which agreed with the unweighted pair group method with arithmetic average (UPGMA) cluster and the principal coordinate analysis (PCoA). These findings are beneficial for ensuring the development and genetic protection of C. gigantea populations in the future.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3