A Data-Driven Dynamic Obstacle Avoidance Method for Liquid-Carrying Plant Protection UAVs

Author:

Ahmed Shibbir,Qiu Baijing,Kong Chun-WeiORCID,Xin Huang,Ahmad Fiaz,Lin JinlongORCID

Abstract

Autonomous sprayer UAVs are one of the most used aerial machines in modern agriculture. During flight missions, some common narrow obstacles appear in the flying zone. These are non-detectable from satellite images and one of the biggest challenges for autonomous sprayer UAVs in farmland. This work introduces an obstacle avoidance architecture specifically for sprayer UAVs. This architecture has generality in the spraying UAV problem, and it reduces the reliance on the global mapping of farmland. This approach computes the avoiding path based on the onboard sensor fusion system in real-time. Moreover, it autonomously determines the transition of several maneuver states using the current spraying liquid data and the UAV dynamics data obtained by offline system identification. This approach accurately tracks the avoidance path for the nonlinear time-variant spraying UAV systems. To verify the performance of the approach, we performed multiple simulations with different spraying missions, and the method demonstrated a high spraying coverage of more than 98% while successfully avoiding all vertical obstacles. We also demonstrated the adaptability of our control architecture; the safe distance between the UAV and obstacles can be changed by specifying the value of a high-level parameter on the controller. The proposed method adds value to precision agriculture, reduces mission time, and maximizes the spraying area coverage.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Optimal Task Allocation Algorithm for Unmanned Aerial Vehicle Swarms;Proceedings of the Cognitive Models and Artificial Intelligence Conference;2024-05-25

2. Popularization of plant protection UAVs and farmers’ income increases: a quasinatural experiment;International Journal of Sustainable Development & World Ecology;2024-04-23

3. Modeling A UAV Surveillance Scenario- An Applied MBSE Approach;2023 IEEE International Systems Conference (SysCon);2023-04-17

4. Optimization of the design parameters of the sprayer rotary device for the chemical treatment of the near-stem zone of fruit trees;E3S Web of Conferences;2023

5. Design of Combined Neural Network and Fuzzy Logic Controller for Marine Rescue Drone Trajectory-Tracking;Journal of Marine Science and Engineering;2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3