Estimation of the Enzymatic Activity of Haplic Chernozem under Contamination with Oxides and Nitrates of Ag, Bi, Te and Tl

Author:

Minnikova TatianaORCID,Kolesnikov Sergey,Evstegneeva Natalia,Timoshenko Alena,Tsepina Natalia

Abstract

Sustainable agriculture is only possible if the agroecological services of the soil are preserved. Soil contamination with rare elements such as silver (Ag), bismuth (Bi), tellurium (Te), and thallium (Tl) is less studied, but their toxicity is no less high than in other heavy metals. Activity of soil enzymes is of great importance for the healthy functioning of soils, agroecosystem services, and their fertility. It is necessary to assess the ecological state of black soil using the most sensitive and informative indicators of the state of soils—their enzymatic activity. The objective of this research was to evaluate changes in activity of five priority soil enzymes (catalase, dehydrogenases, invertase, phosphatase, and urease) when contaminated with oxides and nitrates of Ag, Bi, Te, and Tl in a laboratory model experiment. The integral toxicity of nitrates and oxides of Ag, Bi, Te, and Tl was assessed by the integrated index of soil enzymatic activity. A comparison of the toxicity of oxides and nitrates of each element, according to the integrated index of soil enzymatic activity, allowed us to establish that Ag oxide is more toxic than Ag nitrate; Bi oxide is equivalent in its toxicity to Bi nitrate; and Tl and Te oxides are less toxic than Tl and Te nitrates. When contaminated with oxides, the most informative indicators are activity of invertase (Ag), urease (Bi, Tl), and phosphatase (Te). When contaminated with nitrates, the most informative indicators are activity of phosphatase (Ag) and invertase (Bi, Tl, and Te). Activity of phosphatase and catalase are the most sensitive to contamination by oxides and nitrates of Ag, Bi, Tl, and Te, and dehydrogenases, invertase, and urease are the least sensitive.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3