Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements

Author:

Pavlidis George,Tsihrintzis Vassilios A.

Abstract

Agricultural pollution models are a valuable tool for researchers and managers to predict and assess the potential contamination from the use of fertilizers and pesticides in the field. RZWQM2 is a comprehensive software package developed by the US EPA to predict environmental pollution after agrochemical application. The aim of the present study was to predict, using RZWQM2, the nitrogen and pesticides contents in soil of a monocrop and a tree-crop agroforestry system, and evaluate the effect of trees in reducing pollutants. Soil, weather, and agrochemical parameters for each setup were used as inputs in the model. Soil samples were collected at various depths and distances from the olive trees and were analyzed in the laboratory for nitrogen and pesticide contents. From the analysis of the results, it can be concluded that the model could identify the positive impact of the tree-crop agroforestry system in pollution reduction. Comparing the estimates with the relevant field data, the model presented some overestimation of the pesticide levels, particularly for the high-adsorptive and persistent pendimethalin herbicide, and slightly underestimated the concentrations of nitrates in the soil profile, while ammonium concentrations were well described. Overall, the model can be considered a useful and powerful tool for assessing the positive impacts of agroforestry systems in reducing soil pollution.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3