Genetic Dissection of Tobacco (Nicotiana tabacum L.) Plant Height Using Single-Locus and Multi-Locus Genome-Wide Association Studies

Author:

Ikram Muhammad,Lai Ruiqiang,Xia Yanshi,Li Ronghua,Zhao Weicai,Siddique Kadambot H. M.ORCID,Chen Jianjun,Guo Peiguo

Abstract

Tobacco (Nicotiana tabacum L.) plant height (PH) is a biologically important plant architecture trait linked to yield and controlled by polygenes. However, limited information is available on quantitative trait nucleotides (QTNs), alleles, and candidate genes. The plant height of 94 tobacco accessions and their 126,602 SNPs were measured to conduct a genome-wide association study (GWAS) using four multi-locus (ML) and two single-locus (SL) models to better understand its genetic basis. The ML and SL models detected 181 and 29 QTNs, respectively, across four environments/BLUP; LOD scores ranged from 3.01–13.45, and the phenotypic variance explained (PVE) ranged from 0.69–25.37%. Fifty-two novel, stable QTNs were detected across at least two methods and/or two environments/BLUP, with 0.64–24.76% PVE. Among these, 49 QTNs exhibited significant phenotypic differences between two alleles; the distribution of elite and alternative alleles for each accession ranged from 3–42 and 6–46, respectively, in the mapping population. Seven cross combinations in two directions were predicted using alleles of validated QTNs, including Qinggeng × KY14 for taller plants and RG112 × VA115 for shorter plants. We identified 27 candidate genes in the vicinity of 49 stable QTNs based on comparative genomics, gene ontology (GO), and KEGG enrichment analysis, including AP2, Nitab4.5_0000343g0250.1 (ROC1), Nitab4.5_0000197g0010.1 (VFB1), CDF3, AXR6, KUP8, and NPY2. This is the first study to use genotyping-by-sequencing (GBS) of SNPs to determine QTNs, potential candidate genes, and alleles associated with plant height. These findings could provide a new avenue for investigating the QTNs in tobacco by combining SL and ML association mapping and solid foundations for functional genomics, the genetic basis, and molecular breeding for PH in tobacco.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3