Fertilizer of the Future: Beneficial Bacteria Promote Strawberry Growth and Yield and May Reduce the Need for Chemical Fertilizer

Author:

Silva Leandro Israel daORCID,Oliveira Indira Pereira de,Jesus Ederson da Conceição,Pereira Marlon Corrêa,Pasqual Moacir,Araújo Ronilson Carlos de,Dória JoyceORCID

Abstract

Agriculture is a fundamental activity for human development. However, its sustainable practice is required to ensure the perpetuity of future resources. In this way, bacteria can benefit crops by making available nutrients and metabolites, mainly contributing to reducing the demand for chemical fertilizers. This study aimed to evaluate the biofertilizing capacity of Azospirillum brasilense, Bacillus megaterium, and Brevibacillus fluminis and their effects on improving the physiological and morphoanatomical properties of strawberry seedlings. In vitro tests were performed to evince their potential to supply nutrients (P and K) and produce siderophores and indole-acetic acid. In an inoculation experiment, these strains were inoculated in isolation and mixed in pairs and triples. This experiment was carried out in a greenhouse in a completely randomized design (CRD). The inoculated treatments were fertilized with 30% N and P demands; the uninoculated control received 30% and 100% of these demands. Leaf gas exchange, total chlorophylls, and crown diameter were evaluated during cultivation. After 138 days, leaf number, nutrient content, root length, root and shoot fresh and dry weight, and total seedlings were evaluated. The bacteria tested positive in all in vitro evaluations except for siderophore production. The strawberry responded positively to inoculation. The inoculation, either in isolation or in a mixture, improved stomatal conductance, leaf transpiration, internal CO2 concentration, leaf N and Mg contents, crown diameter, leaf area, and root elongation. We can conclude that the intermediation of microorganisms improves nutrient use efficiency and reduces the strawberry’s fertilizer demand by up to 70%, leading to plant development and yields comparable to complete fertilization.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3