Abstract
Chinese milk vetch (Astragalus sinicus L.) is an important leguminous green manure that frequently suffers from seasonal drought. To improve its drought tolerance, the effects of rhizobia inoculation on drought tolerance and the underlying physiological mechanism were investigated. Drought tolerance in combination with nitrogen assimilation, free amino acids, and polyamines was investigated in milk vetch with active nodules (AN), with inactive nodules (LN), or without nodules (NN). AN plants had increased drought tolerance compared to LN and NN plants. Glutamine synthetase (GS), glutamine 2-oxoglutarate amino transferase (GOGAT), and glutamate dehydrogenase (GDH) activities were decreased after drought, with higher levels in AN plants than in LN and NN plants under both control and drought stress conditions. Higher levels of proline (Pro), arginine (Ala), alanine (Ala), and glutamate (Glu) were observed in AN plants compared with LN and NN plants. Putrescine (Put), spermidine (Spd), and spermine (Spm) levels were increased in response to drought, and higher levels of Put and Spd were maintained in AN plants. It is suggested that active nodulation leads to increased drought tolerance in milk vetch, which is associated with improved nitrogen fixation and ammonium assimilation, which in turn lead to the promotion of free amino-acid and polyamine synthesis.
Funder
China Agriculture Research System-Green Manure
National Key Research and Development Program of China
Subject
Agronomy and Crop Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献