Imidacloprid Disturbs the Nitrogen Metabolism and Triggers an Overall Stress Response in Maize Seedlings

Author:

Zhang Xingxing,Fu Hongkai,Wu Qihua,Chen Lijuan,Lu Yinglin,Gao Shuai

Abstract

Imidacloprid (IMI) protects crops from pests; however, its potential toxicity to plants and underlying mechanisms are still poorly understood. We investigated the effects of IMI on maize seedlings under different nitrogen sufficiency conditions. Our measurement of the maize seedlings’ growth traits and physiological indicators found that a 5 ppm IMI treatment stunted the maize’s growth and enhanced membrane lipid peroxidation under a nitrogen-supplied condition, but that it promoted an increase in biomass and alleviated chlorosis in maize shoots under nitrogen deficiency. These results suggest that IMI causes serious toxicity in maize seedlings under nitrogen-sufficient conditions. The content of IMI indicated that the leaf was the main site of IMI accumulation in maize, and that NO3− was beneficial for the transportation of IMI from the roots to the leaves. The three groups of seedlings, which received 0 (−N), 4 (N) or 10 mmol L−1 NO3− (NN), were either treated or not treated with 5 ppm IMI. The six sets of transcriptome profiles from the shoots and roots were compared using Illumina sequencing. Transcriptome analysis revealed that IMI treatment led to changes in the expression of the genes involved in multiple biological processes, including nitrate transporter, nitrogen assimilation, nitrogen-regulatory factors, detoxification-related genes and several antioxidant-related genes in maize roots. The above results and the data for the nitrate content, glutamine synthetase activities and nitrate reductase activities showed that IMI disturbed nitrogen absorption and metabolism in maize seedlings. Glutathione S-transferase genes, C-type ATP-binding cassette (ABC) transporter 4, anthocyanins and lignin may play an important role in the detoxification of IMI in maize. These findings have helped us to elaborate the underlying detoxification mechanisms of IMI in plants, which is highly important in the cultivation of anti-pesticide crop varieties.

Funder

GDAS’ Project of Science and Technology Development

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3