Abstract
Amaranth (Amaranthus spp.) is a promising biomass crop for silage and biogas production. Under long-day conditions, it exhibits prolonged vegetative growth. To evaluate the breeding potential of amaranth for biomass production, we characterized phenotypic variation in biomass yield components, quantitative genetic parameters, and the relationships between traits. We conducted field trials of 10 biomass-type genotypes exhibiting a ‘giant’ growth habit derived from spontaneous hybridization between genetically diverse parents, and used the variety “Bärnkrafft” as check. We observed two contrasting growth patterns: Bärnkrafft is a variety for grain production and was characterized by a short vegetative growth followed by a long seed ripening. In contrast, the biomass genotypes displayed a long vegetative growth followed by a short seed ripening. We observed strong correlations between dry matter content and stem diameter (r =−0.78, p < 0.01) and between plant height and biomass score (r = 0.95, p < 0.001). High values for broad-sense heritability of stem diameter (H2 = 0.88) and plant height (H2 = 0.92) suggest that the dry matter content and yield can be improved by indirect phenotypic selection. We hypothesize that selection for dry matter content and yield implies a trade-off between earliness and photoperiod sensitivity. Hence, dry matter content should be improved first by recurrent selection, which can be then combined with short-day genes to improve dry matter yield. Overall, this work provides an avenue to the breeding of biomass amaranth.
Subject
Agronomy and Crop Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献