Bilinear Attention Network for Image-Based Fine-Grained Recognition of Oil Tea (Camellia oleifera Abel.) Cultivars

Author:

Zhu XueyanORCID,Yu Yue,Zheng Yili,Su Shuchai,Chen Fengjun

Abstract

Oil tea (Camellia oleifera Abel.) is a high-quality woody oil crop unique to China and has extremely high economic value and ecological benefits. One problem in oil tea production and research is the worldwide confusion regarding oil tea cultivar nomenclature. The purpose of this study was to automatic recognize some oil tea cultivars using bilinear attention network. For this purpose, we explored this possibility utilizing the bilinear attention network for five common China cultivars Ganshi 83-4, Changlin 53, Changlin 3, Ganshi 84-8, and Gan 447. We adopted the bilinear EfficientNet-B0 network and the convolutional block attention module (CBAM) to build BA-EfficientNet model being able to automatically and accurately recognize oil tea cultivars. In addition, the InceptionV3, VGG16, and ResNet50 algorithms were compared with the proposed BA-EfficientNet. The comparative test results show that BA-EfficientNet can accurately recognize oil tea cultivars in the test set, with overall accuracy and kappa coefficients reaching 91.59% and 0.89, respectively. Compared with algorithms such as InceptionV3, VGG16, and ResNet50, the BA-EfficientNet algorithm has obvious advantages in most evaluation indicators used in the experiment. In addition, the ablation experiments were designed to quantitatively evaluate the specific effects of bilinear networks and CBAM modules on oil tea cultivar recognition results. The results demonstrate that BA-EfficientNet is useful for solving the problem of recognizing oil tea cultivars under natural conditions. This paper attempts to explore new thinking for the application of deep learning methods in the field of oil tea cultivar recognition under natural conditions.

Funder

National Key Research and Development Program of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3