Long-Term Chemical and Organic Fertilization Differently Affect Soil Aggregates and Associated Carbon and Nitrogen in the Loess Plateau of China

Author:

Yang Caidi12,Sainju Upendra M.3,Li Chao1,Fu Xin4,Zhao Fazhu12,Wang Jun125

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi’an 710127, China

2. Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi’an 710127, China

3. Northern Plains Agricultural Research Laboratory, USDA-ARS, 1500 North Central Avenue, Sidney, MT 59270, USA

4. College of Resource and Environmental Sciences, Hebei Agricultural University, Baoding 071001, China

5. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xianyang 712100, China

Abstract

Fertilizer sources may have variable effects on soil aggregation, aggregated-associated C and N, and wheat yield. A 34-year field experiment was performed to evaluate the influences of chemical and organic fertilization on soil aggregates and associated carbon and nitrogen under winter wheat in a Cumulic Haplustoll of the Loess Plateau, China. Treatments included unfertilized control (CK), inorganic N fertilizer (NF), inorganic P fertilizer (PF), inorganic N and P fertilizer (NP), organic manure (M), inorganic N fertilizer plus manure (NM), inorganic P fertilizer plus manure (PM), and inorganic N plus P fertilizers plus manure (NPM). Compared to CK, long-term fertilization significantly increased the proportion of soil macro-aggregates, mean weight diameter (MWD), and geometric mean diameter (GMD), but decreased the proportion of micro-aggregates and fractal dimension, especially fertilizer plus manure. Compared to CK, manure treatments (M, NM, PM, and NPM) had a better improvement on soil organic carbon (SOC), soil total nitrogen (STN), particle organic C, and microbial biomass C in all aggregates than the fertilizer alone. The SOC in different aggregates increased with the increased aggregate size, which was because the larger aggregates formed by the binding of the smaller aggregates and organic matter. PON increased in NM and NPM, and MBN was more sensitive to N fertilizer. The C/N ratio in bulk soil and aggregates decreased with fertilization, especially in fertilizer with manure and in macro-aggregates. The improved soil structure was related to the increased SOC and STN, which was proved by the positive correlations among SOC and STN with macro-aggregates and MWD. A correlation analysis also showed that the contribution rate of SOC and STN in macro-aggregates was positively associated with the macro-aggregate and stability. Therefore, the sequestration of C and N in soil was related to aggregate size and was mainly affected by larger aggregates. The results demonstrated that fertilizer with manure improved the soil structure and fertility better than fertilizer alone, thus increasing crop yield.

Funder

National Natural Science Foundation of China

Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province, China

Shaanxi Agricultural Science and Technology Innovation-Driven Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3