Performance of Drift-Reducing Nozzles in Controlling Small Weed Seedlings with Contact Herbicides

Author:

De Cauwer Benny1,De Meuter Ilke1,De Ryck Sander1ORCID,Dekeyser Donald2ORCID,Zwertvaegher Ingrid2,Nuyttens David2

Affiliation:

1. Weed Science Unit, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium

2. Technology & Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium

Abstract

In many EU countries, spray applications should comply with increasingly stringent requirements regarding the drift reduction class of spray nozzles. Many farmers fear that the use of drift-reducing nozzles producing coarse droplet spectra may compromise the performance of contact herbicides on small weed targets. This study examined the effects of various ISO 03 drift-reducing flat-fan nozzles (pre-orifice and single and dual flat-fan air induction nozzles) differing in spray drift reduction class and spray pressure (2.5 bar, 5.0 bar) on (1) spray coverage, (2) droplet characteristics and (3) efficiency of contact herbicides bentazon and phenmedipham against cotyledon and 2-leaf stage plants of Chenopodium album and Solanum nigrum. Performance was compared to that of an ISO 03 standard flat-fan nozzle producing a finer droplet size spectrum. All sprayings were performed at a spray volume of 200 L ha−1. In most dose–response experiments, several drift-reducing flat-fan nozzles performed equally well as standard flat-fan nozzles, regardless of herbicide, spray pressure, growth stage or weed species. However, droplet size spectra of air-induction nozzles were too coarse for an adequate spray coverage and efficient application of contact herbicides on cotyledon stage plants of S. nigrum. In addition, the performance of air-induction nozzles in controlling difficult-to-wet C. album weeds with phenmedipham was better at 5.0 bar than at 2.5 bar. In contrast with droplet size characteristics, spray coverage characteristics determined on water sensitive papers were not good proxies for estimating the biological efficiency of contact herbicides. Air induction nozzles at 5.0 bar allow efficient control of 2-leaf targets, but nozzles emitting finer droplet spectra, such as pre-orifice nozzles, should be preferred for controlling cotyledon stage weeds at low-herbicide doses.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3