CRISPR/Cas9-Mediated Targeted Mutagenesis of GmEOD1 Enhances Seed Size of Soybean

Author:

Yu Han12,Zhao Juan34,Chen Li3ORCID,Wu Tingting3,Jiang Bingjun3ORCID,Xu Cailong3ORCID,Cai Yupeng3ORCID,Dong Jialing3,Han Tianfu3ORCID,Sun Shi3ORCID,Yuan Shan3

Affiliation:

1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

4. Jiuquan Academy of Agricultural Sciences, Jiuquan 735000, China

Abstract

Seed size is a critical agronomic trait that influences the yield and appearance quality of soybeans, making it a primary breeding objective with significant economic value. While the molecular mechanisms that regulate soybean seed size remain largely unknown, several functional molecular targets have been applied in breeding to create larger grain size materials. In this study, we utilized the CRISPR/Cas9 system to induce the targeted mutagenesis of GmEOD1, which encodes the E3 ubiquitin ligase. The resulting homozygous soybean mutant of GmEOD1 exhibited larger seed size and 100-seed weight, with no significant change in the average seed weight per plant. The sum of crude protein and oil content increased significantly in mutants while fatty acid composition remained unchanged. We identified six haplotypes among 156 soybean cultivars, with Hap1 and Hap2 representing the majority of cultivars with relatively higher 100-seed weight, suggesting that sequence variations of GmEOD1 may correlate with seed weight. Transcriptomic analysis across five stages of seed development revealed that stages one–three mainly focused on cell cycle, growth, wall synthesis and modification, photosynthesis, and sugar metabolism; promoting cell growth, reproduction, and carbon accumulation; and providing key intermediates for substance synthesis. Stages four–five focused on polysaccharide catabolism, xylan metabolism, and nutrient pool activity, promoting the accumulation of dry matter, such as sugars, proteins, and lipids in seeds. Weighted gene co-expression network analysis (WGCNA) of modules related to seed size revealed 13 hub genes involved in seed development regulation. This study provides a valuable theoretical basis and excellent opportunities for genetic editing of germplasm cells with subsequent molecular soybean seed size breeding, facilitating easier seed selection to improve soybean quality.

Funder

National Natural Science Foundation

China Agriculture Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3