Phosphorus Supply Increases Internode Length and Leaf Characteristics, and Increases Dry Matter Accumulation and Seed Yield in Soybean under Water Deficit

Author:

Feng Yun-Yin,He JinORCID,Turner Neil C.ORCID,Siddique Kadambot H. M.ORCID,Li Feng-MinORCID

Abstract

Phosphorus (P) addition ameliorates the adverse effects of water stress on the seed yield of soybean (Glycine max L.). Previous studies focused on the effect of P on root traits, but little information is available on changes to aboveground traits. In this paper, we show how P addition affects shoot traits and reduces the adverse effects of water stress on the yield. Two soybean genotypes, with contrasting aboveground architectures, were grown in pots to compare the canopy architecture, leaf traits, aboveground dry matter accumulation and yield under two water and three P levels. The addition of P to two soybean genotypes, one with a larger number of branches and greater leaf area on the branches than the other, showed that the increased leaf area distribution on the main stem and branches was associated with increased shoot and root dry weights, which were positively correlated with the number of filled pods, seed number and seed yield and negatively correlated with seed size at maturity under well-watered and cyclic water stress treatments. The leaf P concentration at 65 DAS (flowering stage) and leaf photosynthesis measured shortly after re-watering increased with P addition, while the leaf mass area on the main stem at 65 DAS and maturity and on the branches at maturity increased modestly with P supply and water stress. Evidence is presented that P addition can ameliorate the adverse effects of water stress on yield through increased leaf area, leaf function and aboveground shoot production. We conclude that the increased yields of soybean resulting from increased P and water supplies that were previously shown to be associated with increased root growth and function are mediated through increased shoot growth and function, particularly the greater number of sites for pod production.

Funder

National Natural Science Foundation of China

Guizhou Science and Technology Support Program Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3