A Method to Estimate Climate Drivers of Maize Yield Predictability Leveraging Genetic-by-Environment Interactions in the US and Canada

Author:

Sarzaeim Parisa1,Muñoz-Arriola Francisco12ORCID

Affiliation:

1. Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA

2. School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0996, USA

Abstract

Throughout history, the pursuit of diagnosing and predicting crop yields has evidenced genetics, environment, and management practices intertwined in achieving food security. However, the sensitivity of crop phenotypes and genetic responses to climate still hampers the identification of the underlying abilities of plants to adapt to climate change. We hypothesize that the PiAnosi and WagNer (PAWN) global sensitivity analysis (GSA) coupled with a genetic by environment (GxE) model built of environmental covariance and genetic markers structures, can evidence the contributions of climate on the predictability of maize yields in the U.S. and Ontario, Canada. The GSA-GxE framework estimates the relative contribution of climate variables to improving maize yield predictions. Using an enhanced version of the Genomes to Fields initiative database, the GSA-GxE framework shows that the spatially aggregated sensitivity of maize yield predictability is attributed to solar radiation, followed by temperature, rainfall, and relative humidity. In one-third of the individually assessed locations, rainfall was the primary responsible for maize yield predictability. Also, a consistent pattern of top sensitivities (Relative Humidity, Solar Radiation, and Temperature) as the main or the second most relevant drivers of maize yield predictability shed some light on the drivers of genetic improvement in response to climate change.

Funder

the Agriculture and Food Research Initiative

the USDA National Institute of Food and Agriculture, Plant Health and Production and Plant Products: Plant Breeding for Agricultural Production

Publisher

MDPI AG

Reference106 articles.

1. Muñoz Orozco, A. (2023, November 21). CENTLI MAIZ. Prehistoria e historia, Diversidad, Potencial, Origen Génetico y Geográfico, Glosario Centli-Maíz. Colegio de Postgraduados en Ciencias Agrícolas. Available online: https://search.worldcat.org/title/centli-maiz-prehistoria-e-historia-diversidad-potencial-origen-genetico-y-geografico-glosarrio-centli-maiz/oclc/651417825.

2. Climate Change Impacts on Global Food Security;Wheeler;Science,2013

3. FAO (2023, November 21). The Future of Food and Agriculture: Alternative Pathways to 2050, Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/.

4. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Buendía, E.C., Shukla, P.R., Slade, R., Connors, S., and van Diemen, R. (2023, November 21). Food Security Coordinating Lead Authors: Lead Authors: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.

5. Stuart, L., Hobbins, M., Niebuhr, E., Ruane, A.C., Pulwarty, R., Hoell, A., Thiaw, W., Rosenzweig, C., Muñoz-Arriola, F., and Jahn, M. (2024). Enhancing Global Food Security: Opportunities for the American Meteorological Society. Bull. Am. Meteorol. Soc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3