Changes in Soil Physicochemical Properties and Maize Production Following Improvement of Salt-Affected Soils Using Coal Bio-Briquette Ash in Northeast China

Author:

Sakai YujiORCID,Shimizu Chie,Murata Hironori,Seto Hitomi,Fukushima Ryosuke,Koga Takashi,Wang Chang

Abstract

Soil degradation due to salinity and sodicity is one of the most important impediments to agricultural production. Coal bio-briquettes (CBB) made from coal, biomass, and desulfurizers have been proposed for use in desulfurization and usage of sustainable energy for coal and biomass in China. CBB ash contains calcium compounds such as calcium sulfate, calcium carbonate, and fly ash. The potential improvement of salt-affected soils using ashes from CBB made from two low-quality coals and/or organic manure (OM) was investigated in northeast China. The CBB ash application rates were 0 kg/m2 (control), 1.16 kg/m2, 2.32 kg/m2, 4.64 kg/m2, and 6.96 kg/m2. Following the application of CBB ash and/or co-application of OM, maize production increased significantly, compared to control plots. Moreover, co-application with OM resulted in higher maize production than application of CBB ash only. Soil pH, sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), and Na+, HCO3−, and CO32− concentrations decreased, and Ca2+, Mg2+, and SO42− concentrations increased from the start of the experiment to harvesting time. Maize production showed a tendency to increase with increasing CBB ash/OM application rates. The decrease in pH, ESP, and HCO3−, and increase in Ca2+ in the application plots over time was particularly remarkable. Moreover, saturated hydraulic conductivity (Ks) after CBB ash application in the slightly and moderately salt-affected soils increased with increasing application rates. In case of the highest application rate (6.96 kg/m2), using ash from CBB made from lower quality coal, pH and ESP decreased from 9.47 to 7.61, and from 7.0% to 0.98%, respectively, and Ks increased drastically by three orders of magnitude. Therefore, not only soil chemical properties, but also Ks, were improved in salt-affected soils using CBB ash. In addition, the heavy metal content in CBB ashes was below the standard values according to Chinese guidelines. Taken together, these results demonstrate the feasibility of sustainable methods for energy usage and environmental application in China.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3