Numerical Simulation of Soil Water–Salt Dynamics and Agricultural Production in Reclaiming Coastal Areas Using Subsurface Pipe Drainage

Author:

Lu Peirong1,Yang Yujie1,Luo Wan1,Zhang Yu1,Jia Zhonghua1

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

Soil salinization induced by shallow saline groundwater in coastal areas can be managed using subsurface pipe drainage (SPD) for agricultural land reclamation. However, a reasonable SPD system layout should comprehensively consider local hydrological conditions and crop physiological characteristics based on long-term model evaluations. The objectives of this study were to test the applicability of a crop growth model (AquaCrop) for simulating winter wheat growth in SPD-applied fields by employing the water table behaviors predicted by the soil hydrologic model HYDRUS. Model calibration and validation based on field observations suggested that HYDRUS accurately predicted the distributions of soil water–salt dynamics, and the seasonal variations of canopy cover and biomass production predicted by AquaCrop were close to the measured values. The simulation scenarios considering the long-term effect of groundwater salinity (10.53, 21.06, and 31.59 g L−1 for low, medium, and high levels), drain spacing (10, 20, 30, 40 m, and no-SPD), and precipitation category (dry, normal, and wet year) on soil solute transport, grain yield (GY), water productivity (WP), and groundwater supply (GS) were further explored using a combination of HYDRUS and AquaCrop. The simulation results indicated that narrowing the drain spacing could improve the desalination performance of SPD, but there was no continuous downward trend of soil solute concentration during the long-term application of SPD when groundwater salinity was constant. The SPD application could improve grain yield by 0.81–1.65 t ha−1, water productivity by 0.13–0.35 kg m−3, and groundwater supply by 6.06–31.03 mm compared to the no-SPD scenarios, but such increases would be less pronounced in dry years with groundwater salinity at the low level. This study demonstrated that the co-application of hydrologic and crop growth models is a feasible method for revealing the effects of SPD on agricultural land reclamation in coastal areas.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Funding project of City-School Cooperation in Yangzhou, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3