Development of a Crop Spectral Reflectance Sensor

Author:

Liu NaisenORCID,Zhang Wenyu,Liu Fuxia,Zhang Meina,Du Chenggong,Sun ChuanliangORCID,Cao Jing,Ji Shuwen,Sun Hui

Abstract

In this study, a low-cost, self-balancing crop spectral reflectance sensor (CSRS) was designed for real-time, nondestructive monitoring of the spectral reflectance and vegetation index of crops such as tomato and rapeseed. The sensor had a field of view of 30°, and a narrow-band filter was used for light splitting. The filter’s full width at half-maximum was 10 nm, and the spectral bands were 710 nm and 870 nm. The sensor was powered by a battery and used WiFi for communication. Its software was based on the Contiki operating system. To make the sensor work in different light intensity conditions, the photoelectric conversion automatic gain circuit had a total of 255 combinations of amplification. The gimbal of the sensor was mainly composed of an inner ring and an outer ring. Under the gravity of the sensor, the central axis of the sensor remained vertical, such that the up-facing and down-facing photosensitive units stayed in the horizontal position. The mechanical components of the sensor were designed symmetrically to facilitate equal mass distribution and to meet the needs of automatic balancing. Based on the optical signal transmission process of the sensor and the dark-current characteristics of the photodetector, a calibration method was theoretically deduced, which improved the accuracy and stability of the sensor under different ambient light intensities. The calibration method is also applicable for the calibration of other crop growth information sensors. Next, the standard reflectance gray scale was taken as the measurement variable to test the accuracy of the sensor, and the results showed that the root mean square error of the reflectance measured by the sensor at 710 nm and 870 nm was 1.10% and 1.27%, respectively; the mean absolute error was 0.95% and 0.89%, respectively; the relative error was below 4% and 3%, respectively; and the coefficient of variation was between 1.0% and 2.5%. The reflectance data measured by the sensor under different ambient light intensities suggested that the absolute error of the sensor was within ±0.5%, and the coefficients of variation at the two spectral bands were 1.04% and 0.39%, respectively. With tomato and rapeseed as the monitoring targets, the proposed CSRS and a commercial spectroradiometer were used to measure at the same time. The results showed that the reflectance measured by the two devices was very close, and there was a linear relationship between the normalized difference vegetation index of the CSRS and that of the commercial spectroradiometer. The coefficient of determination (R2) for tomato and rapeseed were 0.9540 and 0.9110, respectively.

Funder

Natural Science Research Project of Jiangsu Higher Education Institution

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3